Satış Destek Teknik Servis

Godet et al. Critical Care (2018) 22:3

DOI 10.1186/s13054-017-1924-6


High frequency percussive ventilation

increases alveolar recruitment in early

acute respiratory distress syndrome: an

experimental, physiological and CT scan


Critical Care

Open Access

Thomas Godet¹2, Matthieu Jabaudon¹2, Raïko Blondonnet¹,2, Aymeric Tremblay³, Jules Audard ¹2, Benjamin Rieu¹,

Bruno Pereira, Jean-Marc Garcier, Emmanuel Futier¹,2 and Jean-Michel Constantin ¹.2*



Background: High frequency percussive ventilation (HFPV) combines diffusive (high frequency mini-bursts) and

convective ventilation patterns. Benefits include enhanced oxygenation and hemodynamics, and alveolar recruitment,

while providing hypothetic lung-protective ventilation. No study has investigated HFPV-induced changes in lung

aeration in patients with early acute respiratory distress syndrome (ARDS).

* Correspondence:

¹Departement de Médecine Périopératoire (MPO), Hôpital Estaing, Centre

Hospitalier Universitaire (CHU) Clermont-Ferrand, 1 place Lucie Aubrac,

Clermont-Ferrand F-63003, France

²Université Clermont Auvergne, Laboratoire Universitaire GRED, UMR/CNRS

6293, INSERM U1103, Clermont-Ferrand F-63003, France

Full list of author information is available at the end the article

Methods: Eight patients with early non-focal ARDS were enrolled and five swine with early non-focal ARDS were

studied in prospective computed tomography (CT) scan and animal studies, in a university-hospital tertiary ICU and an

animal laboratory. Patients were optimized under conventional "open-lung" ventilation. Lung CT was performed using

an end-expiratory hold (Conv) to assess lung morphology. HFPV was applied for 1 hour to all patients before new CT

scans were performed with end-expiratory (HFPV EE) and end-inspiratory (HFPV EI) holds. Lung volumes were

determined after software analysis. At specified time points, blood gases and hemodynamic data were collected.

Recruitment was defined as a change in non-aerated lung volumes between Conv, HFPV EE and HFPV El. The

main objective was to verify whether HFPV increases alveolar recruitment without lung hyperinflation. Correlation

between pleural, upper airways and HFPV-derived pressures was assessed in an ARDS swine-based model.

BioMed Central

Results: One-hour HFPV significantly improved oxygenation and hemodynamics. Lung recruitment significantly

rose by 12.0% (8.5-18.0%), P = 0.05 (Conv-HFPV EE) and 12.5% (9.3–16.8%), P=0.003 (Conv-HFPV EI). Hyperinflation

tended to increase by 2.0% (0.5-2.5%), P=0.89 (Conv-HFPV EE) and 3.0% (2.5-4.0%), P = 0.27 (Conv-HFPV EI). HFPV

hyperinflation correlated with hyperinflated and normally-aerated lung volumes at baseline: r=0.79, P = 0.05 and

r=0.79, P=0.05, respectively (Conv-HFPV EE); and only hyperinflated lung volumes at baseline: r=0.88, P=0.01

(Conv-HFPV EI). HFPV CT-determined tidal volumes reached 5.7 (1.1-8.1) mL.kg¹ of ideal body weight (IBW).

Correlations between pleural and HFPV-monitored pressures were acceptable and end-inspiratory pleural pressures

remained below 25cmH₂0.

(Continued on next page)

Ⓒ The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (, which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

( applies to the data made available in this article, unless otherwise stated.